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ABSTRACT

Deep learning (DL) techniques have lately been lyideplied to telecommunication systems, and tlase lheen shown
to be an excellent tool for solving complicated Hwonvex optimization issues. In large-scale miltimevave (mmWave)
MIMO systems, hybrid pre coding (-beam forminghis most promising solution for reducing high haatevcosts and
high power consumption. In the near-optimal analgand digital precoders have been constructed roskr
environment, hybrid precoding combines large-dineara analogue precoding (or beamforming) usingnkaih based
formulation with deep learning technique for decosipon of the channel matrix. This work used apdésarning

technique to create a hybrid precoding system wibw level of complexity and better spectral éficy.
KEYWORDS:Massive MIMO, Hybrid Beamforming, Beam Trainingepé.earning, Unsupervised Learning
INTRODUCTION

Wireless communication refers to the transfer dadaver a long distance without the need of wicadles, or other
electrical conductors. Wireless communication vgide term that encompasses all procedures and efay@necting and
communicating between two or more devices via wgglcommunication technologies and devices empgaiwireless
signal. Wireless communication is the transfer afadbetween two or more points without the use phgsical link.

Wireless communication provides various advantatiesto the lack of any "physical infrastructuretedf this entails
compressing distance or space. The utilisationoohection wires is required for wired communicati@ommunication
through wireless networks does not necessitatarplex physical infrastructure or routine maintereans a result, the
cost is lowered. To send and receive messagesgdgaot need to be in an office or a telephone hodtiners in the
outback can rely on satellite phones to call thmied ones, and thus, help improve their generdfaneby keeping them
in touch with the people who mean the most to thg2].

The huge Multiple-Input Multiple-Output (MIMO) teablogy has been touted as one of the most promising

possibilities for the Fifth Generation (5G) stardlaf mobile communication in recent years, and The#d Generation
Partnership Project is working to standardise ®R®In a large MIMO system, each Base-Station (B) tens to

hundreds of antennas, each of which is connectéd twn Radio Frequency (RF) chain, allowing is&rve tens of User
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Equipments (UEs) at the same time-frequency resodrc this way, huge gains could be realised. Oh¢h® most
significant advantages is that such systems magiderably increase capacity and energy efficienidhe same time due

to their ability to produce a very large array gaimd aggressive spatial multiplexing [10]-[13].
HYBRID BEAMFORMING

Hybrid beamforming is a promising method for redigcthe complexity and cost of enormous multipledinmultiple-
output (MIMO) systems while maintaining a high detite. The hybrid precoder design, on the othedhana difficult
undertaking that necessitates CSI feedback ands¢hgion of a sophisticated optimization issue. design hybrid
beamforming in massive MIMO systems, this work jideg a uniqgue RSSI-based unsupervised deep leaafgngthm.
We also present | a method for designing the symibation signal (SS) in initial access (IA) andaiway for designing
the codebook for the analogue precoder [3]-[5]. $yechronization signals need to be detected witbraplete detection

rate. This cause residual errors and will only gige to small performance degradation and systemptexity.
HYBRID PRECODING USING KALMAN

Fully digital techniques are infeasible with largetenna arrays due to hardware constraints at fseghencies, while
purely analog solutions suffer severe performariogtdtions. When applied to a multi-user environtehybrid
analog/digital beamforming is a promising approathree major contributions are made in this pafgrFor hybrid
analog/digital precoding in a multi-user environtienKalman-based formulation with deep learningrieposed; 2) an
analytical expression of the error between trartsghiand estimated data is formulated, so that tden&n algorithm at the
base station does not require information on thamased data at the mobile stations and instea@sranly on the

precoding/combining matrix; and 3) an iterativeusioin for the hybrid precoding sc.

Hybrid precoding designed by minimizing the erretveen the transmitted and estimated data dus #bitity
to better adjust the precoding matrix in hybridhéectures using kalman formulation and reducetesysomplexity. The

proposed system is shown in Fig. 1.
Beamforming

The beam forming algorithms conducted at the digigseband in MIMO communication systems with géanumber of
antennas, often known as massive MIMO systems,beamome very complex. Furthermore, if all beam fogntakes

place in baseband, each antenna will require its B® feed. This can be quite expensive at highuagies and with a
large number of antenna elements, increasing syktesnand complexity. Hybrid beam forming has bpmposed as a

solution to these problems.
Kalman Based Precoder

The mean-phase-error would likewise be reducedguia Kalman filter. The unscented Kalman filtehieh does not
require the computation of the gradient and cardlganonlinearity, can now be used to estimate mhecpin this model.
We also propose an iterative Kalman-based multi-bg#rid solution that minimises the error betwdba preamble
transmitted by the BS and the estimated receivéal atahe MS, because the unscented Kalman filteinmses the mean-
square of the state error-vector directly, regasllef the observation variable. The error formalatis mathematically
defined as a function of simply the precoding, connly, and channel matrices. The algorithm doesraquire any

explicit data estimation in this way.
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Figure 1: The Proposed Architecture of Hybrid Precaling using Kalman.

Then, a two step procedure is carried out: fitst, RF analog precoding/combining step is perforageih single-
user systems based on energy maximum principley #meiterative Kalman-based approach is appliedstimate the

digital baseband precoder at the BS in order tacednter-user interference.
Steps in kalman Formulation
« Initialize system parameters
« Initialize Cannel parameters
« Generate Channel matrix using deep learning
« Compute weight matrix for each mobile station
« Compute hybrid analog and digital precoding matrix
« Normalize the precoding matrix
Kalman Based Precoder Model

A is a matrix, a is a vector, a is a scalar, and A set. KAKF is the Frobenius norm of A, wherads, AH, 1/A are its
transpose, Hermitian, and inverse respectivelg.theé identity matrix, and N(m;R) is a complex Gaais random vector
with mean m and covariance R. E is used to denqgieatation. The network architecture is a mmWawvgedamassive
MIMO cellular system where the BS is sending Neatns through NBS antennas and Nt RF chains fomgel mobile
stations (MS), each with NMS antennas and one Riinglwith Nb < Nt < NBS. At the downlink, the BSmeks a
synchronization message applying both the basepaswbder FBB, with size NtxNb, and the analog pdecd-RF , with

size NBS xNt, so that the sampled transmitted s$igna
x=FRF FBBs (1)

where s is the Nb x1 transmitted symbol vectohdttansmitted power and Nb =M. We assume thateiguslly

allocated among different users’ streams.

For simplicity we adopt a narrowband blockfadingichel.
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Thus, the received signal at MS-m is:
rm=Hm FRF FBBs + nm (2)

where Hm is the NMS x NBS matrix of the mmWave dalelrbetween the BS and the MS-m, and N is the

Gaussian noise vector.
The received signal rm in can be rewritten shoviiregdesired contribution and the interference Bsvis:
rm = Hm FRF fBBmsm +Hm FRF fBBj sj + nm (3)

Where FRF fBBm is the BS precoding vector for MSfBBm is the column m of the matrix FBB. and she

jth element of s.

We compute the analogue combining wm matrix forheambile station and the hybrid analogue and digita
precoding FRF and FBB matrices at the BS in therilymulti-user system. We now want to use the Kalthased

technique to construct the hybrid mmWave precodiadyix by reducing the error defined in:

2 (4)

minimize FEl[s — §|
Frr.Fpp

subjectto  |FrrFpa|% < P
FRF & {f], fL}

The optimization formulation does not involve angtal transmission/estimation s(n) and ~s(n) but dhb
precoding/combining matrices, i. e., FBB, FRF , #mal collection of wm contained in He, that is #wivalent channel

matrix defined as
He =[h1; ::;; hM]H in which hH  (5)
m = wHm

HmMFRF represents the effective downlink channéfif»m. The problem is nonconvex due to the multgian
of the variables FRF, FBB, and wm. However, if weHRF and wm, we can solve the optimization probend calculate
FBB.

RF Precoding and Combining Matrix

We determine first the RF beamforming/combining noas for each BS-MS link independently, similatty and then
continue with the baseband precoding to reducentblti-user interference. In the first step, the B& each MS-m
calculate the RF beamforming and combining vecti®®Em and wm, by maximizing the signal power fog 1S-m. RF
beamforming solutions can be used on this purposerder to design the RF beamforming/combiningteexwithout
explicit channel estimation and maintain a lowrtinag overhead Once the combining vectors wm arerohéed for all
MSs, as well as the the analog precoder FRF @& #dhe digital baseband precoder FBB is compuésgd on algorithm
1.
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Algorithm 1 Kalman based hybrid beamforming

1: Input: BS RF codebook F, MS RF codebook W
2: ['".Iil}l“: Fr“g_ F'_r”.'_ and W Ym = ) M

3. Step 1 - RF Analog design: Single-user F gy and w,,

¥m
4 BS and MS-m select vy, g Vi so that
5 Em, V= argmax ||[gEZH., vl
=

Yim EW, Yy £
6: BS sets Fpp = [vy, ..., vyr] and MS-m sets w,,, =
o VI
7: Step 2 - BB Digital design: Multi-user Fpp
8 MS-m estimates hflf = wiH,, Fgp and quantizes
hm using a codebook Hvm
0; MS-m calculate and sends to BS h,r,. Ym where
10: 1'1,,. = arg max |hfi{ ]"1,.“ II
hneH
11:  BSsets Hp = H, = [hy,..., ha ¥
12: AtBS: forn < N do
I-HpFpo{nn-1)
I-HoFaa(nn—1}T

13: é(n) =

14: Fagin|n) =Fpeinin—1) + K(n)e(n)
15 K(n)=Rinln— 1':Hif. HpR(n|n— I]Hf.f', B
Qul1 | _
16: R(njn) =[I-K{n)Hp|R{n|n —1)
Fup

17: Normalize Fpp = vVP——mnr——
|FrrFpa|lHd

Deep Learning for Channel Matrix

As illustrated in Fig.2, Convolutional Neural Netkse (CNN) are employed in a variety of tasks angehaxcellent
performance in a variety of applications. One @& #arliest applications in which CNN architecturasveffectively used
was the recognition of handwritten numbers. Siheeinception of CNN, networks have been continuoimproved with
the addition of new layers and the use of other mdar vision algorithms. In the Challenge, Convioluél Neural
Networks are typically employed with various condiions of sketch datasets. Few of the researcters shown a

comparison between the human subject and a traieieebrk’s detection abilities on datasets.

« Input Layer: The first layer of each CNN used is ‘input layahich takes data, resize them for passing onto

further layers for feature extraction.

« Convolution Layer: The next few layers are ‘Convolution layers’ whitt as filters for data, hence finding out

features from data and also used for calculatisgrthtch feature points during testing.

« Pooling Layer: The extracted feature sets are then passed ttirigdayer’. This layer takes large data and dhrin
them down while preserving the most important infation in them. It keeps the maximum value fromheac

window, it preserves the best fits of each featwithin the window.

» Rectified Linear Unit Layer: The next ‘Rectified Linear Unit’ or ReLU layer aps every negative number of
the pooling layer with 0. This helps the CNN stagtihematically stable by keeping learned values fgatiing

stuck near 0 or blowing up toward infinity.

« Fully Connected Layer. The final layer is the fully connected layers eihitakes the high-level filtered data and

translate them into categories with labels.
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Figure 2: CNN with Layers.
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EXPERIMENTAL RESULTS
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Figure 3: Input Data.
Fig.3 shows the input data signal generated usindom data
[#] Figure 2 — ] >
File Edit View Insert Tools Desktop MWindow Help ~
TE HS | k[ AR ODEA- @ O =D
. Encoded Data
0.9
0.8
0.7
0.6
0.5
0.4 [
0.3
0.2
0.1
o o 10 20 30 40 S50 50 70 80 20 100

Figure 4: Encoded Data.

Fig.4 shows the data which is modulated and thenasd. For encoding convolutional encoder is uRedeived

data is the input signal, after completion of désgdand demodulation. It is shown in Fig.8
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Figure 5: Performance Comparison.

Fig.5 graph shows the performance comparison oftiegi and proposed. The sum rate at different SNR
Conditions. The proposed method gives better stien ra

CONCLUSION

Broadband beamforming is more applicable in massiildO systems than narrowband beamforming owingsaost-
effective means of mitigating bandwidth issues @sgower-efficient circuits in smart antenna argmgsign. Finally, an
optimal beamforming for massive MIMO systems canabkieved by deploying a combination of analogué digital

beamforming (hybrid analogue/digital beamforming)hvwoptimal algorithms. For the proposed hybrid lbéaming, the
analog beamforming vectors apply the optimal bedgaoh MIMO user. Thus hybrid beamforming jointlysigning with

user scheduling can greatly improve the performarficeassive MIMO system.
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